Syntactically-informed word representations from graph neural network

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Lingual Syntactically Informed Distributed Word Representations

We develop a novel cross-lingual word representation model which injects syntactic information through dependencybased contexts into a shared cross-lingual word vector space. The model, termed CLDEPEMB, is based on the following assumptions: (1) dependency relations are largely language-independent, at least for related languages and prominent dependency links such as direct objects, as evidenc...

متن کامل

Word Ordering as Unsupervised Learning Towards Syntactically Plausible Word Representations

The research question we explore in this study is how to obtain syntactically plausible word representations without using human annotations. Our underlying hypothesis is that word ordering tests, or linearizations, is suitable for learning syntactic knowledge about words. To verify this hypothesis, we develop a differentiable model called Word Ordering Network (WON) that explicitly learns to r...

متن کامل

Syntactically Informed Text Compression with Recurrent Neural Networks

We present a self-contained system for constructing natural language models for use in text compression. Our system improves upon previous neural network based models by utilizing recent advances in syntactic parsing – Google’s SyntaxNet – to augment character-level recurrent neural networks. RNNs have proven exceptional in modeling sequence data such as text, as their architecture allows for m...

متن کامل

Learning Distributed Word Representations For Bidirectional LSTM Recurrent Neural Network

Bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) has been successfully applied in many tagging tasks. BLSTM-RNN relies on the distributed representation of words, which implies that the former can be futhermore improved through learning the latter better. In this work, we propose a novel approach to learn distributed word representations by training BLSTM-RNN on a spe...

متن کامل

Dependency Treelet Translation: Syntactically Informed Phrasal SMT

We describe a novel approach to statistical machine translation that combines syntactic information in the source language with recent advances in phrasal translation. This method requires a source-language dependency parser, target language word segmentation and an unsupervised word alignment component. We align a parallel corpus, project the source dependency parse onto the target sentence, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2020

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2020.06.070